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Abstract. We study the dynamics of the growth process of fluctuating diffusion fronts of interacting par-
ticles. The description of the kinetics is based on the mean field master equation within the framework
of a lattice gas model. We analyse the time evolution of diffusion fronts by a dynamic scaling approach,
and find that the scaling behaviour of these interfaces is characterised by anomalously large exponents
which agree with the numerical and experimental results. Using a theoretical model of diffusion fronts’
fluctuations developed in [1], we have also illustrated the diffusion fronts’ propagation via avalanches.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 05.60.-k Transport processes –
68.35.Fx Diffusion; interface formation

1 Introduction

Recently, an enormous amount of work [2–9] has been
devoted to the study of the dynamics of growing rough
surfaces which may originate from many processes. Some
surfaces are formed as a result of a deposition process,
others are generated due to erosion or etching and some
interfaces are formed spontaneously in inhomogeneous
media. In general, these systems are related to out of
equilibrium phenomena for which no systematic formal-
ism exists. To this end, a variety of discrete models and
continuous equations have been developed with the goal
of understanding the generic properties of these diverse
growth processes, and to identify the universality classes
to which the growth models belong. The simplest model
exhibiting kinetic roughening is the Edwards-Wilkinson
linear model [10] based on a Langevin-type equation. The
first extension of the Edwards-Wilkinson equation to in-
clude non-linear terms was proposed by Kardar-Parisi and
Zhang, and this gives rise to the KPZ relation [11]. The
two-dimensional KPZ model successfully describes a re-
markable diversity of growth processes and is an excellent
example of universality.

One of the most important quantities used to char-
acterise the scaling of the interfaces is the width σ(L, t)
which is defined by,

σ(L, t) =
(
〈h2〉 − 〈h〉2

)1/2
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where the function h(x, t) gives the height of the interface
at time t and position x. L is the system size and 〈 〉
denotes a spatial average over the whole system.

For early times, the width is expected to grow as some
power of time [12],

σ(L, t) ∼ tβ

the exponent β describes the growth of correlation with
time along the growth direction. At a characteristic satu-
ration time tc(L) ∼ Lz (z is the dynamic exponent), the
correlation length reaches the system size leading to the
width saturation with a power law dependence on L [12],

σ(L, t→∞) ∼ Lα

where α is the roughness exponent that characterises the
surface morphology. Hence, the width σ(L, t) satisfies the
Family-Vicsek ansatz [12],

σ(L, t) = Lαf(t/Lz)

where the scaling function f(x) behaves as,

f(x) ∼
{
xβ if x� 1
const if x� 1.

The fact that a growing surface spontaneously evolves into
a steady state with fractal properties, Bak et al. [13] have
proposed that the dynamics of these systems can be de-
scribed by a mechanism they call self-organized criticality.
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The latter is supposed to be a natural evolution of ex-
tended dissipative systems for which the1/fγ noise repre-
sents the intrinsic evolution of spatial structure with scale
invariant properties. The basic ideas of self-organisation
processes are illustrated in the avalanche models intro-
duced by Bak, Tang and Wiesenfeld [13].

In this paper we investigate the motion of nonequi-
librium unidimensionel interfaces called diffusion fronts.
The latter propagate through an inhomogeneous system
of which the static properties are represented by the prob-
lem of percolation in a gradient. We have simulated the
growth dynamics of diffusion fronts of hard core parti-
cles without interaction in a preceding work [14]. Here,
we process the case of repulsively interacting particles in
which an order-disorder transition occurs, so as to extract
the ordering effects on the diffusion fronts. The numeri-
cal simulations are performed using the mean field master
equation in the context of a lattice gas model and the re-
sults are analysed by the dynamic scaling approach. In the
second part of this work, we study the dynamics of diffu-
sion fronts in the framework of a self-organized criticality
mechanism.

2 Mean field lattice gas model

A lattice gas consists of a discretisation of continuous
space. The latter is subdivided into cells represented by
sites forming a lattice. The sites can be occupied or empty.
For each site i, we define an occupation number ni which
takes the value 0 or 1 to designate respectively an empty
or full site. The set of all the occupation numbers at a
given moment is called a configuration. For a lattice of
N sites labelled by their coordinates i = 1, 2, ..., N ; the
configuration of particles can be written

{n} = {n1, n2, ..., nN}·

When the particles interact, their Hamiltonian is given by

H = −
∑
i>j

εijninj − µ0

∑
i

ni. (1)

For a repulsive interaction, εij = ε < 0 and {i, j} are
nearest neighbour sites; µ0 is the bare chemical potential.

To define the dynamics we suppose that the particles
can jump to nearest-neighbouring empty sites. This cor-
responds to the change of the occupation numbers of the
lattice sites. Such a dynamic can be treated by the general
master equation for the kinetic evolution of the average
concentration pk = 〈nk〉 [15]

∂pk
∂t

=
∂

∂t
〈nk〉 = −

∑
j

〈Jkj〉 (2)

Jkj is a current operator along the link k ↔ j, which takes
the following form

Jkj({n}) ≡ ωkj({n})nk(1− nj)− ωjk({n})nj(1− nk)
(3)

where ωkj({n}) is the jump probability from site k to site j
depending on the local configuration. The product nj(1−
nk) imposes that the site j is filled while the site k is
empty (the hard core exclusion principle).

The model is a hopping model in which the jumps
are between nearest neighbour sites. The barrier that the
particles have to overcome before making a jump only
depends on the depth of the initial site: the saddle point
energy is insensitive to the environment and the energy
of the final site has no influence on the jump probability.
As the thermal energy is supposed small compared to the
barrier heights, the jump probability follows an Arrhenius
law. This leads to

ωkj({n}) = ω0 exp
(
−ε
KBT

∑
a6=j−k

nk+a

)
(4)

ω0 is the isolated jump probability, a denotes a lattice unit
vector and summation over a means summation over all
nearest neighbours.

The kinetic equation (2) is untractable in its present
form and simplifications are necessary. The simplest ap-
proach is the mean field approximation that consists of re-
placing all the operators nk for the jump probabilities ωjk
by their average concentrations pk at the same site k [16].
The general expression for the current in equation (2) can
then be written as

〈Jkj({n})〉≡〈ωkj({n})〉pk(1− pj)−〈ωjk({n})〉pj(1− pk)
(5)

where

〈ωkj({n})〉 = ω0 exp
(
−ε
KBT

∑
a6=j−k

pk+a

)
. (6)

For systems of particles with repulsive interaction, an
order-disorder transition arises at a critical temperature
Tc. As a consequence, a symmetry breaking is present at
low temperature. It is then convenient to distinguish the
various sublattices by different “colors”. In the case of a
square lattice, the ordered phase consists of an ordering
onto a checkerboard lattice formed with two sublattices
with colors A and B. On each sublattice, a concentration
can be defined and it is supposed by hypothesis to vary
slowly in space: pA

k and pB
k are then defined for k belonging

as well to A or B. Equation (2) then becomes

∂pA
k

∂t
= −

∑
j=k+a

〈JAB
kj ({n})〉 (7a)

∂pB
j

∂t
= −

∑
k=j+a

〈JBA
jk ({n})〉 (7b)

where

JAB
kj ≡ 〈ωAB

kj 〉pA
k (1− pB

j )− 〈ωBA
jk 〉pB

j (1− pA
k ). (8)
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Fig. 1. The distribution of the concentration profile, solution
of equations (7), on a square lattice. The black and grey sites
indicate different sublattices. The bold line illustrates the dif-
fusion front.

3 Dynamic scaling of diffusion front growth

The calculations are restricted to the repulsive interac-
tions in the low temperature regime and are performed
using a set of particles diffusing in the presence of a con-
centration gradient on a square lattice of dimensions L and
L′. The length L′ is large compared to the width L. The
concentration of diffusers p is fixed at one for x = 0 and at
zero for x = L′. The numerical resolution of equations (7)
shows that the dynamics of the diffusion process is char-
acterised by an order-disorder transition which consists of
the break down of lattice occupation symmetry by filling
one sublattice at the expense of the other (one sublattice
being empty and the other filled at p = 0.5). This order-
disorder transition is well discussed in [15]. We distribute
the concentration profile solution of (7) on a square lat-
tice by associating to each site of the lattice at random
a positive value less than one. The value is then com-
pared to the one of the density profile at the same ab-
scissa. The result of the comparison defines the occupa-
tion state of the lattice sites: if the random number is less
than the value of the concentration at the same site the
latter will be occupied; otherwise the site remains empty.
Figure 1 shows the behaviour of diffusing particles under
the above conditions. The outermost line of particles still
connected to the source is the diffusion front. The latter
can be seen also as an interface delimiting disordered re-
gion from the ordered one. Our calculation of the front
fractal dimension gives a value (Df = 1.75 ± 0.05) close
to that of the diffusion front of noninteracting particles.
We analyse the temporal evolution of the diffusion front
width by a dynamic scaling approach. Thus, we report
the interface width σf(L, t) (L is the system lateral size)
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Fig. 2. Log-log plot of the diffusion front width versus time
for different system sizes (L). The best fit of the linear region
(before saturation) gives the slope β = 0.41 ± 0.01.
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Fig. 3. A plot of the saturated interface width as a function
of the samples size on log-log plot. The continuous line fits the
data and gives the roughness exponent α = 0.62± 0.01.

versus time t for different sample sizes in Figure 2 on log-
log plot. We find that before saturation, σf increases with
the exponent β = 0.40 ± 0.01(σf ∼ tβ). The front satu-
rated width sketched as a function of the system lateral
size in Figure 3 on a log-log plot leads to a roughness
exponent α = 0.62 ± 0.01 in σf(sat) ∼ Lα. We have ob-
served in our simulations that the front localisation de-
pends on the interaction regime recovering, thus the re-
sults of references [17,18] where it was displayed that the
diffusion front of interacting systems can be assimilated to
the hull of interacting percolation problem for which the
percolation threshold depends on the interaction regime
(p(xf, γ, t→∞) = pc(γ)).

As mentioned above, we have undertaken the same cal-
culations in the case of the front of noninteracting diffus-
ing particles in a previous work [14] and we have found
that the front grows with an exponent β = 0.40 ± 0.01
and saturates with an exponent α = 0.62 ± 0.01. Hence,
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the order-disorder transition does not influence the scaling
behaviour of diffusion fronts; only its localisation is af-
fected by the interactions.

Discussion

The scaling exponents obtained for an interacting system
coincide with those of the noninteracting case (taking into
account the interval error) as indicated above. This result
is consistent with the universality concept. These scal-
ing exponents’ values belong to the scaling picture devel-
oped by different experiments and simulations concerning
driven interfaces moving in disordered media (fluid flow
in porous media, paper wetting) [19–24]. This can be ex-
plained by the fact that the diffusion fronts and the inva-
sion fronts exhibit the same fluctuations behaviour [25].
Indeed, taking inspiration from previous results [1,25], we
assume that our model is appropriate to the problem of
injection of a fluid in a porous media in the bidimensional
case: the finite ordering clusters of particles correspond to
the pores clusters in the fluid-flow experiments, the con-
centration plays the role of fluid pressure and the noise
generated by the fluctuations of a front’s length is iden-
tified with the noise of fluid pressure fluctuations in the
invasion experiments. The diffusion front is an interface
propagating in a disordered medium, in which the driv-
ing force can be expressed as: F ∼ 1/|∇p| (where ∇p
is the local concentration gradient) and is located at a
critical concentration pc corresponding to a critical driv-
ing force Fc ∼ 1/|∇pc| (|∇pc| denotes the concentration
gradient at pc). Although the particles are mobile in our
model, there exist at any time t finite ordered clusters in
the vicinity of the diffusion front. Hence, the motion of
the latter is done through frontiers delimiting the clus-
ters. Taking into account the stationary behaviour of the
diffusion front for infinite times, we can assume that the
random distribution of ordered clusters just nearby the
front is static and in average it has the same effect as
the quenched disorder. This is confirmed by the obtained
scaling exponents being larger than those predicted by the
EW and the KPZ universality in (1 + 1) dimensions as it
is known that quenched disorder generates anomalously
large exponent values. Thus, the diffusion fronts possess
the same features as the interfaces that move in the pres-
ence of quenched noise.

4 Self-organized criticality in diffusion front
growth

4.1 The front fluctuations model

Particular attention was given to the fluctuations of
the diffusion front as it makes easier studies of inter-
face instabilities. Numerical calculations [1] had provided

Fig. 4. Time evolution of the number Nf of particles on the
diffusion front (from Ref. [1]).

a so-called “catastrophic events” rising through connec-
tion/disconnection process of clusters of large size by the
jump of a single particle. As shown in Figure 4, a mi-
croscopic process may induce remarkable changes of the
number of particles on the front in a time scale of the
order of one particle hopping time. The simulations have
been performed considering only hard core interaction and
it was found that fluctuations of the length of the front
behave like a power law with the Hurst exponent,

〈
∆Nf(t)2

〉
=
〈(

Nf(t)−Nf(0)
)2〉

∼ t2H . (9)

There exists a crossover time t∗ which delimits two
regimes. The first regime (H = 1/2) corresponds to time
intervals shorter than t∗ where fluctuations are linear with
time (1/f2 noise). For the second regime (H = 0), the
fluctuations saturate (1/f noise).

Gouyet and Boughaleb have developed a theoretical
model to describe the connection/disconnection process
of front fluctuations [1]. The model is based on knowl-
edge of clusters distribution in vicinity of the front and
probability of appearance of fluctuation of size h. Some
little changes in defining the diffusion front are included
to allow better characterisation of the fluctuations. The
front is assimilated to a seashore which delimits islands
from lakes. Thus, the fluctuations of the front are de-
termined by connection/disconnection of islands (parti-
cle clusters) or by closure/opening of lakes (clusters of
empty sites) by jump of an only one particle. To simplify
the presentation, taking into account the similarity of the
scaling laws, only the connection/disconnection process
of clusters is considered and there is no correlation be-
tween two successive fluctuations of the front length . Let
Mh(p) be the number of clusters with h sites on their
hulls. These clusters are centred in a region of concentra-
tion p and are able to be connected or disconnected by
only one particle jump. In this region, mh(p) of Mh(p) are
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supposed to be connected at a given time. The probabil-
ity of the connection/disconnection process is governed by
the Smolochowski equation which can be written as [1],

∂P (mh, t)
∂t

= 2ΠhP (mh, t)

− (2mh −Mh)Πh
∂P (mh, t)
∂mh

+
MhΠh

2
∂2P (mh, t)

∂m2
h

(10)

where Πh denotes the elementary probability of connect-
ing/disconnecting one particular cluster among theMh(p)
and is related to “τr = 1/2Πh(p)” the characteristic relax-
ation time of the system in a region of concentration p.

The development of calculations using equation (10)
allows to recover analytically the expression of front length
fluctuations shown numerically by relation (9) and to de-
termine the density of events Nev(h) that is the number of
events of size h per time unit (connection or disconnection
of a cluster of size h). The density of events of size h is of
great interest as it permits us to link with the avalanche
models for self-organized criticality. It has been displayed
that it takes the following form [1],

Nev(h) ∼ h−yh (11)

where yh = 2− 1
υDf

= 1.5714...

Equation (11) has been confirmed numerically in [26].

4.2 Analogy between the diffusion front fluctuations
model and the avalanche models

Following the evolution of the diffusion front, we notice
that the catastrophic events happen once the front goes
away from the percolation threshold pc due to connec-
tion or disconnection of clusters (frequent small events
in Fig. 4) just nearby it. This can be explained by the
fact that each time the diffusion front deviates from pc,
it evolves spontaneously (without the intervention of an
adjusting force) in order to restore its critical state cor-
responding to a fractal structure centred in the region
of concentration pc. In other words, the fluctuations rule
self-tunes the diffusion front such that it is always at the
critical point pc by connection or disconnection of large
clusters characterised by a power law density Nev(h). The
temporal signature of such an evolution as shown in the
previous section is the flicker noise. Thus, one can eas-
ily deduce that the front fluctuation is a self-organized
critical phenomenon of which the general mechanism is
similar to the avalanches process. Indeed in models of
avalanche, the condition that insures the criticality is, in
general, linked to the average height θ. If θ exceeds a crit-
ical value θc, due to the addition of grains; one assists
therefore to the avalanches. The particles provided by the
source in our model induce the diffusion leading to the
connection/disconnection process of clusters neighbouring
the front which causes the deviation of the front from its

critical state. These particles perturb the system playing
then the role of the external flow of grains in the avalanche
models. The avalanches arise to restore the critical state
of the pile like the large fluctuations (catastrophic events)
in the front model and the two processes are distributed
as a power law of same form. Thus, it is clear that the crit-
ical concentration pc denotes the critical height θc in the
avalanche models language, the particles provided by the
source in the front model are identified to the added grains
in the avalanche models and the large fluctuations repre-
sent the avalanches. All arguments above display that the
diffusion front is an extended dissipative system as it keeps
its fractal geometry and presents a 1/f noise; it evolves
according to a self-organized critical mechanism which can
be described by the avalanches process.

5 Conclusion

In summary, we have displayed that the order-disorder
transition influences only the localisation of the diffusion
front. The front width σf(L, t) satisfies the dynamic scal-
ing Family-Vicsek ansatz [12] (σf(L, t) = Lαf(t/Lz)) with
critical exponents α and β which are anomalous in the
sense that they are larger than the EW and the KPZ ex-
ponents. Given the similarity between the diffusion and
the invasion fronts fluctuations, we have explained this
anomalous roughening by the presence of finite ordering
clusters in vicinity of diffusion front. This constitutes an
inhomogeneous disorder that has the same effect as the
quenched randomness generated by the pores in the fluid-
flow experiments. We have also shown that the diffusion
front propagation is a self-organized critical phenomena
by establishing an analogy between the front fluctuations
model and the avalanche models.
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